skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ji, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Indirect function calls are widely used in building system software like OS kernels for their high flexibility and performance. Statically resolving indirect-call targets has been known to be a hard problem, which is a fundamental requirement for various program analysis and protection tasks. The state-of-the-art techniques, which use type analysis, are still imprecise. In this paper, we present a new approach, TFA, that precisely identifies indirect-call targets. The intuition behind TFA is that type-based analysis and data-flow analysis are inherently complementary in resolving indirect-call targets. TFA incorporates a co-analysis system that makes the best use of both type information and data-flow information. The co-analysis keeps refining the global call graph iteratively, allowing us to achieve an optimal indirect call analysis. We have implemented TFA in LLVM and evaluated it against five famous large-scale programs. The experimental results show that TFA eliminates additional 24% to 59% of indirect-call targets compared with the state-of-the-art approaches, without introducing new false negatives. With the precise indirect-call analysis, we further developed a strengthened fine-grained forward-edge control-flow integrity scheme and applied it to the Linux kernel. We have also used the refined indirect-call analysis results in bug detection, where we found 8 deep bugs in the Linux kernel. As a generic technique, the precise indirect-call analysis of TFA can also benefit other applications such as compiler optimization and software debloating. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)